Hidden Markov Models Training by a Particle Swarm Optimization Algorithm
نویسندگان
چکیده
In this work we consider the problem of Hidden Markov Models (HMM) training. This problem can be considered as a global optimization problem and we focus our study on the Particle Swarm Optimization (PSO) algorithm. To take advantage of the search strategy adopted by PSO, we need to modify the HMM’s search space. Moreover, we introduce a local search technique from the field of HMMs and that is known as the Baum–Welch algorithm. A parameter study is then presented to evaluate the importance of several parameters of PSO on artificial data and natural data extracted from images. Mathematics Subject Classifications (2000): 68T05 [68Q32, 91E40], 65C35 [82C80], 90C59.
منابع مشابه
Constraints in Particle Swarm Optimization of Hidden Markov Models
This paper presents new application of Particle Swarm Optimization (PSO) algorithm for training Hidden Markov Models (HMMs). The problem of finding an optimal set of model parameters is numerical optimization problem constrained by stochastic character of HMM parameters. Constraint handling is carried out using three different ways and the results are compared to Baum-Welch algorithm (BW), comm...
متن کاملParticle Swarm Optimization for Hidden Markov Models with application to Intracranial Pressure analysis
The paper presents new application of Particle Swarm Optimization for training Hidden Markov Models. The approach is verified on artificial data and further, the application to Intracranial Pressure (ICP) analysis is described. In comparison with Expectation Maximization algorithm, commonly used for the HMM training problem, the PSO approach is less sensitive on sticking to local optima because...
متن کاملHidden Markov Models Training Using Population-based Metaheuristics
In this chapter, we consider the issue of Hidden Markov Model (HMM) training. First, HMMs are introduced and then we focus on the particular HMMs training problem. We emphasize the difficulty of this problem and present various criteria that can be considered. Many different adaptations of metaheuristics have already been used but, until now, a few extensive comparisons have been performed on t...
متن کاملParticle Swarm Optimization of Hidden Markov Models: a comparative study
In recent years, Hidden Markov Models (HMM) have been increasingly applied in data mining applications. However, most authors have used classical optimization ExpectationMaximization (EM) scheme. A new method of HMM learning based on Particle Swarm Optimization (PSO) has been developed. Along with others global approaches as Simulating Annealing (SIM) and Genetic Algorithms (GA) the following l...
متن کاملA Comparison Between GA and PSO Algorithms in Training ANN to Predict the Refractive Index of Binary Liquid Solutions
A total of 1099 data points consisting of alcohol-alcohol, alcohol-alkane, alkane-alkane, alcohol-amine and acid-acid binary solutions were collected from scientific literature to develop an appropriate artificial neural network (ANN) model. Temperature, molecular weight of the pure components, mole fraction of one component and the structural groups of the components were used as input paramet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Math. Model. Algorithms
دوره 6 شماره
صفحات -
تاریخ انتشار 2007